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Abstract

Learning dance without expert guidance often leads to
ingrained errors and limited progress due to lack of real-
time, personalized feedback. We introduce an end-to-end
AI dance feedback pipeline that segments a user’s perfor-
mance into 19 primitive figures using MoveNet and a Vision
Transformer, aligns each segment to professional reference
videos via Dynamic Time Warping (DTW), and generates
real-time corrective feedback through a Gemini-based rec-
ommender module. Unlike prior systems that enforce ex-
act choreography matching and offer no actionable coach-
ing, our method tolerates stylistic variations and changes in
move order while delivering personalized guidance.

Our dataset consists of 32 selected ballet videos annotated
into 145 figure segments. We preprocess by extracting 17
keypoints per frame with MoveNet, translating to a hip-
centered coordinate system scaled by torso length, and ap-
plying random rotations, dropout, temporal scaling, and
Gaussian noise augmentations to improve robustness. Al-
though we applied our model to ballet (leveraging our spe-
cific dataset and preprocessing pipeline), it can be read-
ily extended to other styles of dance. On this dataset, our
Vision Transformer achieves 92.5% training accuracy and
82.2% validation accuracy. In a 10-user study, feedback
from our system boosts mean user accuracy from 55.9% to
66.8%, with 85% of feedback judged coherent. We com-
plement these results with quantitative analyses (confusion
matrices, accuracy scores, training vs. validation graphs)
and qualitative examples of feedback and failure cases, and
we discuss extensions to possible future work in the field.

1. Introduction

Learning complex dance movements without expert
guidance often leads to frustration and ingrained bad habits.
Instructors and live classes can be expensive and/or geo-
graphically inaccessible, creating a barrier for learners seek-

ing real-time, personalized feedback. An AI-powered coach
that provides move-level guidance could make dance educa-
tion more accessible by delivering instant corrections, pre-
venting user errors from becoming bad habits, and reducing
reliance on face-to-face instruction.

Our motivation stems from bridging the gap between pas-
sive video tutorials and active coaching. Prior systems typ-
ically perform rigid, frame-by-frame pose comparisons (of-
ten with CNN or RNN based underlying structures) and of-
fer limited insight into user mistakes. They struggle with
variations in timing, style, and move order. In contrast,
modern transformers excel at capturing long-range depen-
dencies in video, and sequence-alignment techniques like
Dynamic Time Warping (DTW) can accommodate tempo-
ral shifts. We leverage these advances to build a robust,
flexible feedback loop.

The input to our algorithm is a user-recorded RGB video
of a dance performance (30 frames per second, variable
length) and a reference database of professional ballet
videos annotated with primitive figure segments. We then
use MoveNet for 2D pose extraction, a Vision Transformer
(ViT) trained on our reference dataset for sliding-window
figure classification, and FastDTW to align each predicted
segment to its closest exemplar. Our system outputs an
overall accuracy score for the user input video and gener-
ated feedback for each of the user’s moves that stray too far
away from the reference videos for that figure segment (also
compiled into a finalized video with feedback format). The
User Interface presents this in a side-by-side visualization
comparing user and reference performances, with an over-
laid concise caption describing the deviation from the ref-
erence and offering concrete steps for the user to improve.
Figure 1 provides a visualization of the output of our model.

2. Related Work

Research on dance-focused pose estimation and recog-
nition has advanced significantly in recent years. Hu and
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Figure 1. Sample of comparison image for the model, expected output will be annotated video.

Ahuja proposed an unsupervised 3D pose estimation frame-
work that can track dancers, estimate 3D poses, and in-
fer camera parameters without necessarily required ground-
truth 3D data, enabling hierarchical dance video recogni-
tion under what normally would be considered very diffi-
cult settings [12]. Venkatrayappa et al. discuss recent 3D
human body pose and shape estimation methods applied
to dance, finding that multi-frame approaches like PHALP
outperform single-frame models by using temporal context
to handle rapid and more complex movements [22]. In ad-
dition, Zhang et al. introduce YeLan, a high-frequency 3D
pose estimation system using event cameras, demonstrating
robust performance in low-light and high-dynamic scenar-
ios (which can be especially helpful as these features are
quite common to settings where dance performances typi-
cally take place) [25]. While these works push the bound-
aries of 3D motion capture, they require specialized sen-
sors or multi-view setups, limiting the accessibility of such
a model to more casual learners worldwide.

Also, recently, interactive systems designed for dance prac-
tice provide insights into visualizing feedback for dance
learners. Zhou et al.’s SyncUp offers interactive visual-
izations of pose similarity and temporal alignment to sup-
port dance practice, highlighting segments and body parts
needing improvement in terms of synchronization across
dancers [26]. Bera et al.’s SYD-Net benchmarks several
sports, yoga, and dance postures by integrating patch-based
attention on CNN structures, achieving great accuracy on

newly created dance image datasets [6]. Both systems em-
phasize visual analysis but do not generate explicit, move-
level coaching feedback or handle arbitrary move ordering
beyond a set choreography.

Beyond dance, pose-based coaching applications in other
domains illustrate the potential of AI for coaching related
tasks. Cheng et al. present MatchPoint, which matches
beginner tennis strokes to professional reference ones us-
ing keypoint extraction and k-NN, enabling players to dis-
cover how to become more like certain pro tennis players
[9]. Alluri et al. automate powerlifting judging by detecting
key joint angles to check how valid a lift is, showing high
agreement with human referees [4]. Qu applies pose esti-
mation to rock climbing, extracting movement patterns to
identify technical errors and recommend adjustments [18].
These works show how pose comparisons for feedback can
have widespread applications. However, they focus on more
largely rigid, single-action sports and activities, while dance
typically should allow for more stylistic variation and se-
quential choices.

In addition, advances in temporal feature modeling have
more recently allowed for better sequence comparison. Liu
et al. develop a multi-frame human pose estimation method
that matches temporal features, improving accuracy on
video frames even with faster motions [14]. Müeller dis-
cusses Dynamic Time Warping (DTW) to match differ-
ent time series under variable speed, and this work under-
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Figure 2. Complete system workflow: (1) Offline training of ViT
classifier on labeled reference dataset, (2) Online processing of
user video through pose extraction, windowing, and classification,
(3) DTW alignment with reference examples, (4) Loss computa-
tion and feedback generation via Gemini recommender system.

lies many efficient, windowed DTW implementations used
in motion analysis [15]. These techniques influenced our
choice of FastDTW for matching segments.

Our work builds on these foundations by combining real-
time 2D pose extraction with transformer-based sliding-
window classification and DTW-based segment matching to
deliver effective, move-level feedback. Unlike 3D or multi-
view systems, we rely on a single RGB camera and light
preprocessing. Compared to platforms that only support vi-
sualizations, we also add the coaching element to the model
for the segments / moves that are most misaligned or dif-
ferent from the reference dataset. In addition, by tolerating
stylistic and speed variations, our system supports flexible
learning, advancing from existing models that do rigid se-
quence matching to more personalized dance coaching.

3. Methods
3.1. System Overview and Workflow

Figure 2 illustrates our end-to-end pipeline for AI-
powered dance feedback. Our system operates in two dis-
tinct phases: an offline training phase and an online infer-
ence phase. During training, we use our annotated refer-
ence dataset of 32 ballet videos (145 labeled figure seg-
ments) to train a Vision Transformer classifier that learns
to identify 19 distinct most common ballet dance moves /
figures. During inference, we process user-uploaded videos
through pose extraction, figure segmentation and classifica-
tion, DTW-based alignment with reference dataset videos,
and finally generate personalized feedback through our rec-
ommender module.

The offline training phase begins with our pre-labeled ref-
erence dataset, where each video segment is annotated with
its corresponding figure class (1-19). We extract pose key-
points using MoveNet [3, 23], normalize coordinates, and
train a Vision Transformer to classify minimum 24-frame
windows into figure categories. This trained model is then
saved for later use.

During online inference, user-uploaded videos follow a sim-
ilar preprocessing pipeline: pose extraction via MoveNet,
coordinate normalization, and sliding-window segmenta-
tion. Each window is classified using our trained ViT
model, with predictions chosen through majority voting to
produce figure segments (allowing for the model to also
classify the movement with a value of -1 if its confidence
is not above a certain threshold value of 0.6 to identify the
figure as none-of-the-above: not a standard ballet dance
move but instead some other action like sitting or standing).
For each identified segment, we compute DTW distances
to all reference examples of the same figure class, selecting
the closest match. The resulting DTW loss feeds into both
our accuracy scoring function and our Gemini-based recom-
mender system, which generates targeted feedback captions
and visualizations for the user interface.

3.2. Vision Transformer for Figure Classification

We use a Vision Transformer (ViT) architecture [10]
adapted for pose sequence classification. ViTs leverage
self-attention mechanisms to capture long-range dependen-
cies across input tokens, making them well-suited for un-
derstanding complex movement patterns that span multiple
frames (like those common to dance). Unlike convolutional
approaches that process local neighborhoods, transformers
can directly model relationships between distant time steps,
which is especially useful for this task of recognizing dance
figures that involve coordination of full-body movements
over extended periods.

Our ViT implementation is built upon the standard trans-
former encoder architecture from Vaswani et al. [21]. In
use, it is given a pose sequence window X ∈ RT×D of
T = 24 frames and D = 35 features (17 keypoints times
2 coordinates + 1 time feature) to start with, we first ap-
ply a linear embedding layer to project each frame to a
dmodel = 128 dimensional space:

h0 = XWe (1)

where We ∈ R35×128 is the embedding matrix.

The embedded sequence passes through L = 3 transformer
encoder layers, each containing multi-head self-attention
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(with h = 8 attention heads) followed by a position-wise
feed-forward network:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2)

MultiHead(X) = Concat(head1, ..., headh)W
O (3)

FFN(x) = max(0, xW1 + b1)W2 + b2 (4)

The final transformer output is passed through a sin-
gle linear classification layer that produces per-frame logits
Z ∈ R24×19 for our 19 figure classes. We train using cross-
entropy loss averaged over all frames in each window:

Lcls = − 1

T

T∑
t=1

log softmax(Zt)[yt] (5)

where Zt ∈ R19 represents the logit vector for frame t, yt
is the ground truth class label for frame t, and T = 24 is the
window size.

Our ViT implementation extends existing transformer li-
braries [24] with custom preprocessing for pose sequences.
We built the training pipeline, data loading, and model ar-
chitecture changes, while using existing core transformer
implementation and PyTorch [17].

3.3. User Video Processing Pipeline

When a user uploads a dance video, we extract pose
keypoints using Google’s MoveNet model [3], a CNN-
based pose estimator designed for real-time applications.
MoveNet uses a MobileNetV2 backbone [23] with special-
ized output heads to predict 17 body keypoints with preci-
sion. Each keypoint includes (x, y) coordinates and a confi-
dence score, robust to varied lighting conditions and camera
angles commonly encountered in user content.

Then, we normalize extracted poses using our torso-length
scaling approach: coordinates are translated to place the hip
midpoint at the origin, then scaled by the distance between
hip and shoulder midpoints. This normalization removes
dependencies on subject size, camera distance, and frame
positioning:

hip center =
left hip + right hip

2
(6)

shoulder center =
left shoulder + right shoulder

2
(7)

torso length = ∥shoulder center − hip center∥2 (8)

keypoint norm =
keypoint − hip center

torso length
(9)

For temporal segmentation, we apply a sliding window ap-
proach with minimum window size w = 24 frames and

stride s = 5 frames. Each window captures at least 1 sec-
ond of motion at 30 fps, thus it is able to judge figures across
a longer video rather than jumping between predictions. We
append a normalized time feature t ∈ [0, 1] to each frame
within a window to help the model distinguish between po-
sitions across time. Windows are classified independently
using our trained ViT, then aggregated via majority voting
to assign figure labels to individual frames. Consecutive
frames with identical labels are merged into coherent seg-
ments representing complete dance figures.

Figure classification uses a confidence threshold τ =
0.6: segments with maximum prediction confidence below
this threshold are given label −1, representing transitional
movement or non-dance content (like just sitting/standing).
This prevents false positive classifications during periods
when users are preparing for the next move or making ad-
justments.

3.4. Dynamic Time Warping Alignment

For each classified user segment, we employ Dynamic
Time Warping (DTW) [7] to find the best-matching refer-
ence example from our annotated dataset. DTW computes
an optimal alignment between two temporal sequences by
allowing flexible stretching and compression along the time
axis, accommodating natural variations in movement speed
and timing that occur between different dancers.

Given a user segment S = {s1, s2, ..., sm} and refer-
ence example R = {r1, r2, ..., rn}, DTW constructs a
cost matrix C ∈ Rm×n where Ci,j = ||si − rj ||2 rep-
resents the Euclidean distance between normalized pose
vectors. The algorithm finds an optimal warping path
W = {w1, w2, ..., wK} where each wk = (ik, jk) satis-
fies some constraints related to monotonicity and continuity
(and DTW(S,R) is calculated by taking the sum of the costs
across the warping path minimized across all possible can-
didates for the warping path):

DTW(S,R) = min
W

K∑
k=1

Cwk
(10)

subject to: w1 = (1, 1), wK = (m,n) (11)
wk+1 − wk ∈ {(1, 0), (0, 1), (1, 1)} (12)

We use the FastDTW implementation [2, 19] which reduces
computational complexity from O(mn) to approximately
O(m + n) through multilevel dynamic programming and
radius-constrained warping. This optimization enables real-
time processing of user videos without sacrificing align-
ment quality.

For each user segment of predicted class c, we compute
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DTW distances to all reference segments labeled with class
c, selecting the reference example with minimum cost as the
best match. This distance serves as our primary error met-
ric, with lower values indicating closer alignment to profes-
sional performance.

3.5. Loss Computation and Accuracy Scoring

Our system converts raw DTW distances into inter-
pretable accuracy scores using an exponential decay func-
tion designed to emphasize the practical difference between
good and poor performance. Given a DTW distance d be-
tween user segment and reference exemplar, we compute:

Accuracy = e−d/100 (13)

This formulation maps DTW distances to the range (0, 1],
where distances near 0 yield accuracies approaching 100%,
while larger distances asymptotically approach 0%. The
scaling factor of 100 were empirically tuned based on the
distribution of DTW distances in our reference dataset,
where typical distances between reference videos range
from 50-150 and problematic user performances often ex-
ceed 300.

For videos containing multiple figure segments, we com-
pute overall accuracy as the mean of individual segment ac-
curacies, weighted by segment duration:

Video Accuracy =

∑N
i=1 durationi × accuracyi∑N

i=1 durationi

(14)

This weighting ensures that longer, more complex figures
contribute proportionally to the overall assessment, prevent-
ing brief transitions from dominating the score.

We also track per-figure accuracy statistics and identify the
segments / moves with highest DTW distances as the pri-
mary mistakes of the user and therefore focus on that for
feedback generation. These segments represent the user’s
most significant deviations from professional technique, so
our model then provides detailed guidance through our rec-
ommender system.

3.6. Feedback Generation via Gemini

Our recommender system uses Google’s Gemini large
language model [5] to translate quantitative pose differences
into qualitative coaching feedback. For figures identified as
requiring correction through our DTW analysis pipeline, we
extract key representative frames from both user and refer-
ence sequences corresponding to the moments of maximum
deviation.

Our feedback generation process operates on pre-computed
DTW alignments stored with unique identifiers. When a
user segment receives a DTW distance indicating signifi-
cant error (above a certain threshold of 10), the system iden-
tifies the specific frame within that segment where the devi-
ation is most pronounced. We then locate the corresponding
reference frame from the best-matching reference sequence
using the DTW alignment path.

The Gemini model processes structured pose difference
data organized by body regions (with arms, legs, torso,
and head positions) along with contextual information about
the specific ballet figure being performed. Our prompt en-
gineering framework provides detailed templates that de-
scribe the context of the dance move and highlight specific
patterns in terms of joint errors and how to fix them.

Gemini generates personalized feedback structured as
JSON structured objects containing figure-specific guid-
ance for each body region. Our visualization pipeline com-
bines this textual feedback with side-by-side frame com-
parisons, displaying the user’s performance alongside the
reference performance at the moment of maximum error.
The system extracts frames using computed indices from
the DTW alignment process, ensuring that users see exactly
where their technique diverges from what professional did.
Feedback text is overlaid beneath the visual comparison,
creating an integrated coaching experience that combines
visual and textual guidance.

3.7. User Interface and Visualization

Our user / command-line interface [16] presents feed-
back through synchronized video playback and overlay vi-
sualizations. Users view their original performance along-
side the best-matching reference segment, with pose skele-
tons rendered in real-time using OpenCV graphics. Feed-
back captions appear as timed overlays synchronized to spe-
cific movement phases, allowing users to associate verbal
guidance with visual cues.

Our codebase builds extensively on existing libraries:
MoveNet pose extraction [3, 23], PyTorch transformers [11,
17, 24], FastDTW alignment [2, 19], OpenCV visualiza-
tion [16], and Gemini API integration [5]. Our core con-
tributions include the ViT training pipeline, DTW-based
matching system, accuracy scoring functions, and inte-
grated user interface, while using these established tools for
a new application of computer vision and machine learning
operations.
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4. Dataset & Features
4.1. Dataset Sources

• Let’s Dance Dataset [13]: 1000 dance videos from
10 different dance forms, including ballet and waltz,
collected as part of a research study from GeorgiaTech.
Includes pre-extracted pose estimation keypoints.

• Steezy Online Platform [20]: Additional curated pro-
fessional dance videos. The data is obtained under
educational fair use and was preprocessed with video
editing and MoveNet for more high quality training
purposes.

4.2. Reference Dataset Composition

We found 32 high-resolution ballet videos: 27 from the
Let’s Dance Dataset [1] and 5 from Steezy Studio [20], and
then annotated the figures / moves within each section by
hand, totaling 145 annotated figure segments. Videos are
1080×1920 resolution at 30 fps, with individual figure seg-
ments / moves averaging 1.83 seconds (55 frames). Our 19
classes of figures includes 7 directional variants to capture
nuanced movement differences:

Class Name Description

1L,1R Spin Clockwise (L) / Counter-
clockwise (R) whole-body
rotation

2L,2R LegLift Raise left/right leg with arm ex-
tension

3L,3R JumpDir Elegant jump moving left/right
4L,4R ReachBendLeg Reach forward, bend torso, ex-

tend leg left/right
5 FloorMove Ground-based movements

(rolls, floor spins)
6L,6R Flap Full-body undulation left/right
7 ReachSeq Sequential right-left arm

reaches
8 StraightJump Vertical jump arms overhead
9L,9R JumpOut Directional jump with out-

stretched limbs
10 ArmSpread Symmetrical arm extension
11L,11R KneeBend Single-knee bend reaching

left/right
12 StandUp Transition from ground to

standing
Table 1. 19 figure classes with 7 directional variants (L/R). See
CSV attachment for full segment annotations.

4.3. Data Splits & Preprocessing

We split reference data into 116 training and 29 vali-
dation segments (80/20 dataset split proportions). Test set
comprises 20 user-recorded videos performing ballet rou-
tines. All data undergoes the following:

Normalization: Pose keypoints translated to hip midpoint
origin and scaled by torso length (hip-to-shoulder distance)
using:

p̂i =
pi − chip

∥cshoulder − chip∥2
, (15)

where pi is raw keypoint and c are joint midpoints.

Augmentation: Randomly applied (with independent prob-
ability 0.7 for each type of augmentation) to training seg-
ments from the reference dataset: We used data augmenta-
tion to account for noise and increase the amount of data we
have, also helping prevent overfitting [8].

• Random rotations of reference video (with angle of ro-
tation about origin in range [-0.2, 0.2]). We selected a
standard rotation range to accommodate various cam-
era angles and found this range worked best.

• Joint dropout with dropout probability of 0.05. We
dropped joints to account for occlusions.

• Temporal scaling (±20% via linear interpolation). We
used this to account for faster and slower video inputs,
and found this range to work best.

• Gaussian noise (σ = 0.01) on keypoint coordinates.
We used this to account for keypoint noise from
Movenet, video quality, and the user.

4.4. Feature Representation

We use MoveNet’s 17-keypoint outputs transformed into
35 dimensional vectors (x,y per joint plus one time feature).
Each 24-frame window concatenates pose vectors with nor-
malized timestamps, forming 24× 35 input tensors.

5. Experiments, Results, & Discussion
The metrics reported in this section are based on the cal-

culations detailed in the Methods section above. For hy-
perparameter selection, we validated across multiple con-
figurations for our Vision Transformer (ViT) model and ul-
timately selected the model that achieved the highest val-
idation accuracy while best preventing overfitting. After
performing validation across 512 combinations of hyperpa-
rameter choices, the final hyperparameters we selected for
our model are as follows: embedding dimension (embed)
= 128, number of attention heads = 8, depth = 3, learning
rate (lr) = 0.0001, optimizer = Adam, batch size (bs) = 16,
number of augmentations (aug) = 200, window size (win)
= 24, stride = 5, and tolerance threshold (tol) = 0.6.

As noted earlier, augmentations were crucial in reducing
overfitting, a significant issue in initial versions of our
model. The final model showed an acceptable overfitting
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level, balancing high training accuracy with good validation
generalization. These hyperparameter choices were guided
both by standard ViT training best practices and extensive
testing across hundreds of configurations.

Figure 3 presents the overlaid training and validation loss
and accuracy curves for our best-performing ViT model.

Figure 3. ViT Training/Validation Loss and Accuracy Graphs

As shown in Figure 3, after 20 epochs, the training accu-
racy exceeded 90%, and the validation accuracy reached
82.2%, indicating strong generalization. The global (frame-
weighted) accuracy across all videos was 67.97%, a solid
performance given the complexity of figure classification.

Figure 4 shows the confusion matrix for our trained ViT
model. It demonstrates that the model can classify ballet
figures with reasonably high accuracy, closely aligning pre-
dictions with ground truth labels.

These results indicate that our ViT model is sufficiently
trained and can be reliably used in downstream tasks of the
project.

After training the ViT model, we evaluated the complete
project workflow, including the online system that processes
user-uploaded videos using MoveNet, the trained ViT clas-

Figure 4. ViT (Transformer) Confusion Matrix

sifier, fastDTW, and the Gemini recommender module.

We conducted both quantitative and qualitative evaluations.
For the quantitative analysis, we ran a user study measuring
mean accuracy improvements before and after using the AI
coach.

User Without Coach Acc. Post-Coach Acc.

U1 0.366 0.728
U2 0.130 0.379
U3 0.465 0.699
U4 0.769 0.670
U5 0.714 0.733
U6 0.826 0.863
U7 0.457 0.502
U8 0.863 0.815
U9 0.584 0.699
U10 0.415 0.595

Average 0.559 0.668
Table 2. User accuracy (as e−error score/100) rounded to thousandths
place before and after using the AI coach.

As shown in Table 2, the average improvement across 10
users was 10.9%. This reflects a significant increase com-
pared to the 5.1% improvement seen with our baseline
model (which did not use a Vision Transformer).

We also attached a video demonstration in the project sub-
mission, further supporting the model’s capability in detect-
ing performance issues and delivering actionable, personal-
ized feedback.

Qualitatively, the captioning system’s generated feedback
was evaluated for reasonableness. Out of 20 test videos, the
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feedback was deemed accurate (compared to expert ground
truth) in 17/20 cases (with some hallucinations naturally
present due to the commonalities between dance moves /
figures). This was measured by checking for hallucinations
and consistency with known user mistakes.

Overall, our results confirm both the effectiveness of the
trained ViT model in accurately classifying ballet figures,
and the complete project pipeline’s success in delivering
useful, personalized feedback that enhances user perfor-
mance, the primary goal of our project.

6. Conclusion / Future Work
In this work, we presented an effective pipeline for

dance figure recognition and alignment using a supervised
Transformer-based classifier, MoveNet, and DTW-based
comparison within identified figure classes. Our current
approach streamlines and significantly improves upon our
earlier attempts (particularly compared to our initial sliding-
window DTW strategy and various unsupervised figure dis-
covery methods), which proved either computationally too
expensive or unreliable due to the complexity and amount
of variation that is present across dance. The results are
promising for the framework, the feedback seems to be gen-
uinely useful and accurate.

Looking ahead, we envision some major extensions to
enhance both the usability and accuracy of the system.
First, upgrading from MoveNet pose keypoint detection
to get more fine-grained user movement information like
foot orientation, etc. Thus, creating more specific feed-
back for the user. Second, integrating real-time feedback
via live video would allow frame-by-frame analysis and
near-instantaneous figure classification, enabling actionable
guidance during rehearsals. Third, moving from 2D to 3D
pose estimation would allow the model to better account
for depth, capturing subtle but important aspects of dancer
posture. Fourth, expanding to multi-person detection and
tracking would broaden the system’s applicability to group
rehearsals and partner dances, enabling individualized feed-
back even in shared scenes. Fifth, expanding our profes-
sional video dataset to allow for more accurate pose/figure
recognition and processing.

All together, these future directions reflect our commitment
to building a system that is not only technically accurate but
also practical and enriching for dancers seeking meaningful,
real-time improvement.

7. Contributions & Acknowledgements
Special thanks to the CS231N class and specifically our

mentor Jiaman Li for the support and guidance through-

out the project. For this project, we all worked together
on the actual code and write-up, and discussed all key sec-
tions / methods we used. Henry helped with setting up the
OpenCV and MoveNet, processing the dataset, creating and
training all four iterations of the Vision Transformer model,
user classification and segmentation, and DTW compar-
isons. Arnold helped with training the Vision Transformer
model, tuning figure comparisons, post-processing, the rec-
ommender module, and extracting dataset. Roshen helped
with extracting dataset, training Vision Transformer model,
and the research behind the fast-DTW, Transformer model,
and MoveNet.

In addition, here is a list of Github repos which we found
useful to our project pipeline and used along the way:

• Albumentations Official repo: https://github.com/
albumentations-team/albumentations

• Gym (OpenAI Gym) Official repo: https://github.com/
openai/gym

• Matplotlib Official repo: https://github.com/ mat-
plotlib/matplotlib

• NumPy Official repo: https://github.com/numpy/
numpy

• OpenCV (cv2) Official repo: https://github.com/
opencv/opencv

• Pandas Official repo: https://github.com/pandas-dev/
pandas

• Pillow (PIL) Official repo: https://github.com/python-
pillow/ Pillow

• PyTorch Official repo: https://github.com/pytorch/ py-
torch

• PyTorch Lightning Official repo: https://github.com/
Lightning-AI/pytorch-lightning

• PyYAML (yaml) Official repo: https://github.com/
yaml/ pyyaml

• Requests Official repo: https://github.com/psf/ re-
quests

• scikit-image Official repo: https://github.com/scikit-
image/ scikit-image

• scikit-learn Official repo: https://github.com/scikit-
learn/ scikit-learn

• Seaborn Official repo: https://github.com/mwaskom/
seaborn

• Segmentation Models PyTorch Official repo:
https://github.com/qubvel-org/segmentation models
.pytorch

• TensorFlow Official repo: https://github.com/ tensor-
flow/tensorflow

• TorchMetrics Official repo: https://github.com/
Lightning-AI/torchmetrics
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• TorchVision Official repo: https://github.com/pytorch/
vision

• tqdm Official repo: https://github.com/tqdm/tqdm
• Transformers (Hugging Face) Official repo: https://

github.com/huggingface/transformers
• Weights & Biases (wandb) Official repo: https://

github.com/wandb/wandb
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